TABLE OF CONTENTS

Ch	apter		Pa	age
1.	Outi	ine of F	unctions and Features	1
	1.1		of Functions	
	17		CS	
	1.3		ary of the Principles of FM-type Sound Generation	
2.	Con	structio	n and Features	5
	2.1	Block	Diagram	5
		2.1.1	Resistor	
		2.1.2	Phase Generator	6
		2.1.3	FM Operator	
		2.1.4	Envelope Generator	
		2.1.5	Noise Generator	
		2.1.6	Low Frequency OSC	
		2.1.7	Timer	
		2.1.8	Accumulator	
	2.2	Pin W	iring	
		2.2.1	Pin Functions	
3.	Dev	nice Spe	cifications	24
	3.1	Maxin	num Ratings	. 24
	3.2	Electr	ical Characteristics	. 24
4.	Inte	rfacing		. 30

1. OUTLINE OF FUNCTIONS AND FEATURES

1.1 Outline of Functions

The YM2151 is an FM-type sound generator equipped with an 8 bit bus line and capable of producing superb audio quality via a microprocessor program. When this IC is used in tandem with the specially-developed YM3012 D/A converter, you can obtain 8-note, left-right/2-channel audio signals.

In addition, this unit is equipped with noise, vibrato, an amplitude modulation circuit, a sound effects circuit, and timer.

The package is a 24-pin dual in-line package.

1.2 Features

- Generate up to 8 notes.
- Generate noise.
- Timbre can be altered temporally.
- High harmonic can be de-harmonized from the base frequency.
- De-harmonize between octaves.
- Interval settings of up to 1.6 cents.
- Add vibrato and amplitude modulation.
- Generate a variety of sound effects by extreme de- harmonization of the high harmonic from the base frequency and massive vibrato and amplitude modulation.

1.3 Summary of the Principles of FM-type Sound Generation

FM-type sound can be expressed via a basic configuration like that depicted in Figure 1.1. If this were to be expressed formally, it would look like this:

Fig. 1.1

A(t): Volume envelope
B(t): Timbre envelope
Nx : 1/2 of the basic pitch or multiple value
Dx : 1/2 of the basic pitch (1.6 cents) harmonic value

For example, when B(t) = 0, you get a sine wave of (Nc + Dc) times with respect to the basic pitch. In this case, if we assume values for Nc and Dc like those given above, we will obtain a 1/2 the basic pitch or a sine wave of multiple value. As long as the value for Dc is not 0, the output will indicate a pitch sine wave slightly offset from 1/2 the basic pitch or multiple value. When B(t) is greater than 0, the output will not be a sine wave but a wave form including a high harmonic component, because B(t) • sin (Nm + Dm) • wt is added onto the (Nc + Dc) • wt phase information. It therefore follows that a variety of wave forms including a high harmonic component can be obtained by selecting different values for B(t) and (Nm + Dm). Also, the timbre can be altered and output by temporal adjustment of B(t).

Actual output patterns when altering the value of B(t) and (Nm + Dm) and adding it onto the previous pattern are indicated in Fig. $1.2 \sim 1.9$.

Fig. 1.6 (Nc + Dc)/(Nm + Dm) = 1, B(t) = 2.0

Fig. 1.7 (Nc + Dc)/(Nm + Dm) = 0.5, B(t) = 0.5

Fig. 1.8 (Nc + Dc)/(Nm + Dm) = 0.5, B(t) = 1.0

The YM2151 is equipped to handle 7 different kinds of combinatory connection methods, with two circuits composed of this basic structure assigned to a single note, which can be arranged serially or in parallel, or made to act as only a sine- wave sound source. In addition, with the unit set up as in Figure 1.10, with inclusion of a circuit that takes one's own output signal and returns it to oneself, virtually any type of wave form can be obtained via proper adjustment.

Fig. 1.10

An example of the wave form in this case is depicted in Figure 1.11

Fig. 1.11 Example output of a-point waveform.

2. CONSTRUCTION AND FEATURES

2.1 Block Diagram

The block diagram is as depicted in Figure 2.1.

As explained in the previous section, the YM2151 uses two FM modulation circuits for a single note. These are time division circuits, with sine table read four times. Since it is possible to produce up to 8 sound sources overall, the circuit has been constructed so as to operate on a 32-slot time division basis. Figure 2.2 shows the relation between the sound channel number and the slot number. The following is an explanation of the functions of each of the components, along with the content of the data these components handle.

2.1.1 REG: Register

This is 256-byte area register for the storage of data which in turn drive and set the individual function circuits to be explained later. The address map is shown in Figure 2.3. When this register is at initial clear (\overline{IC} terminal = "0"), all is "0" level.

B: WRITE BUSY FLAG (READ MODE)

The bit in the diagram below is shown being written in. From the time the write command is received until the write is completed, a period of Φ_M 68 bits is required. During this time the flag reads "1". When continuing data and writing in, it is necessary to confirm that this flag reads "0" before writing in the next datum.

CT: CONTROL OUTPUT

Bits D_i and D₂ correspond to output terminals CT1 and CT2 and comprise the External control output port. At initial clear (\overline{IC} terminal = "0"), the CT₁ and CT₂ terminals read "0" level.

KON: KEY ON

As shown in the figure below, when entering a key on (off) which corresponds to a 3-bit channel number and a 4-bit slot, the sound source begins (ends). Writing in "1" for the level at SN turns the key on, while writing in "0" turns the key off. For the channel number please refer to the channel number in Figure 2.2. The SN bits D₃, D₄, D₅, and D₆ correspond to M₁, C₁, M₂ and C₂.

2.1.2 PG: Phase Generator

The phase information needed to fix the carrier frequency and modulator frequency is generated here by KC, KF, MUL, DT1, DT2, PMS data from the REG. Also, the production of vibrato effects by data from the LFO and sound effects due to frequency modulation, etc. is carried out at the PG.

KC: KEY CODE (OCT, NOTE)

The key code uses a datum per note, and a datum is composed of 7 bits as depicted in the figure below. The first 3 bits express the octave (8 octaves), and the last 4 bits express the note. The relation between octaves and notes on the one hand and intervals on the other is depicted in Figure 2.4. A sound frequency of 440.0 Hz can be obtained by setting the device clock frequency at 3.579545 MHz and entering frequency data KC:(OCT = 4, NOTE = 10), KF = 0, MUL = 1, DT1 = 0, DT2 = 0, PMS = 0.

KF: KEY FRACTION

The key fraction uses a datum per note, and a datum is composed of 6 bits as depicted in the figure below. With these 6 bits of data you can fix the phase information by dividing the note interval (100 cents) into 1.6-cent segments (see Figure 2.4).

MUL: PHASE MULTIPLY

Four data set one note, comprised of 4 bits as indicated in the figure below. With this function you can multiply the KC- and KF-input phase information, as shown in Figure 2.5.

DT1: DETUNE (I)

Four data set one note, comprised of 3 bits as indicated in the figure above. With this function you can detune the phase information from the frequency vis-a-vis the KC- and KF-input phase information, as shown in Figure 2.6. Also, the phase information from this DT1 undergoes scaling via the key code.

DT2: DETUNE (2)

Four data set one note, comprised of 2 bits as indicated in the figure below. With this function you can carry out gross detuning of the phase information from the frequency vis-a-vis the KC- and KF-input phase information, as shown in Figure 2.7. This is effective when generating sound effects.

PMS: PHASE MODULATION SENSITIVITY

One datum used to set a note, comprised of 3 bits as indicated in the figure below. You can obtain vibrato and trembling sounds from the LFO (low frequency oscillator) signals that express band width in 8 bits by adding them to the KC and KF. As indicated in Figure 2.8, this sensitivity can be controlled at 8 different levels. The value indicated here obtains when the LFO output is at its maximum value.

2.1.3 OP: FM Operator

Picks up the phase information from the PG and reads out the sine table. The read-out signal is multiplied by the envelope information from the EG. At end of OP circuit, connection switch is activated, or you can control the volume of feedback the phase information as necessary. Here, the FM-modulated signal is transmitted to ACC.

CON: CONNECTION

One datum used to set a note, comprised of 3 bits as indicated in the figure below. With this CON, you can construct a distinct 8-note OP circuit configuration that will allow you to produce all 8 notes with various timbre.

Figure 2.9 shows this circuit construction.

FL: SELF FEEDBACK LEVEL

One datum used to set a note, comprised of 3 bits as indicated in the figure above. The FL level can be controlled for all notes as shown in Figure 2.10.

2.1.4 EG: Envelope Generator

The EG output is multiplied by the signal appearing after the OP reads out the sine table, imparting timbre and volume alterations. When the key on is entered at the EG, the EG changes in the manner indicated in the following figure.

When the attenuation volume is expressed as a logarithm, the attack changes exponentially and the decay changes in a straight line.

The movement from TA to TD1, as well as from TD1 to TD2, is carried out when the attenuation volume is 0 dB, as well as at the first decay level (D1L).

AR: ATTACK RATE

Four data used to set a note, comprised of 5 bits as indicated in the figure below. When key on is entered at the EG, the attenuation volume diminishes, and after the attack time (TA) the attenuation volume approaches 0 dB. The attack time can be set by means of the AR as in Figure 2.11. Also, the AR is scaled by the key code, so refer to Figure 2.12.

D1R: FIRST DECAY RATE

Four data used to set a note, comprised of 5 bits as indicated in the figure below. When the attenuation volume is 0 dB, the EG automatically moves to first decay, obtaining first decay level. This first decay time (TD1) can be set by means of the D1R as in Figure 2.11. Also, D1R is scaled by the key code, so refer t Figure 2.12.

D2R: SECOND DECAY RATE

Four data used to set a note, with a datum comprised of 5 bits as indicated in the figure below. When the first decay level has been passed, the EG automatically moves to second decay and remains in this state until key off. This second decay time (TD2) can be set by means of the D2R as in Figure 2.11. Also, D2R is scaled by the key code, so refer to Figure 2.12.

RR: RELEASE RATE •

Four data used to set a note, with a datum comprised of 4 bits as indicated in the figure below. With key off the EG begins release and attenuation advances toward the maximum attenuation volume (96 dB). The release time (TR) can be set by means of the TR as in Figure 2.11. Also, RR is scaled by the key code, s refer to Figure 2.12. Note that because the RR contains one less bit than either D1R or D2R, resolution will be poor.

KS: KEY SCALING

Four data used to set a note, with a datum comprised of 2 bits as indicated in the figure below. The KS scales the AR, DIR, D2R, and RR rates according to the key code, and this scaling can be controlled via four different levels as indicated in Figure 2.12.

The attack, first decay, second decay, and release times are set by each rate after it has been scaled.

DIL: FIRST DECAY LEVEL

Four data used to set a note, with a datum comprised of 4 bits as indicated in the figure below. When EG passes this level it automatically moves from first decay to second decay. With a 3 dB resolution, each bit weighted as indicated in Figure 2.13.

TL: TOTAL LEVEL

Four data used to set a note, with a datum comprised of 7 bits as indicated in the figure below. The EG calculates the total level (expressed as attenuation volume) operated by the EG with respect to each time and outputs this figure to the OP, controlling the timbre (modulation) as well as the volume. Minimum resolution is 0.75 dB, with the bits weighted as indicated in Figure 2.14.

AMS: AMPLITUDE MODULATION SENSITIVITY •

One datum used to set a note, comprised of 2 bits as indicated in the figure below. The EG can carry out amplitude modulation using (8-bit) LFA data from the LFO. Maximum amplitude modulation can be set as indicated in Figure 2.15.

You can decide whether or not to modulate a particular slot by using the AMS-EN switch when carring out amplitude modulation. AMS data is set for every channel.

2.1.5 NOISE: Noise Generator

When the NOISE control is on ENABLE, the 32nd slot is changed to the noise slot. The noise OS is controled by the NOISE GENERATOR clock externally and can be changed. Also, the envelope uses the 32nd slot for the envelope function, but at this point transformations are not logarithmic: the attack undergoes exponential change and the decay undergoes straight-line change.

- NE: NOISE ENABLE
- NE is available if the (D7) bit is set at "1", making the 32nd bit slot the noise slot.

NFRQ: NOISE FREQUENCY The relation between NFRQ and noise frequency is ٠

f Notse (KHz) = $\frac{\phi_M (KHz)}{32*(NFRO.)}$ $\phi_M = 3579.545 \text{KHz}$ (YM2151 added clock frequency)

and can be changed throughout a range of from approximately 3.5 kHz to 111.9 kHz.

At this point the noise period value is

T NOISE (SEC) =
$$\frac{2^{17} - 1}{\int NOISE (Hz)}$$

and can range from approximately 37.5 sec to 1.17 sec.

2.1.6 LFO: Low Frequency OSC

The LFO, which can control oscillation waves over a wide spectrum (from approximately 53 MHz to 0.008 Hz), selects one wave form from among several available, providing sound source frequency modulation and amplitude modulation.

At this point, the output level can be controlled with the signals used for the frequency modulation and amplitude modulation.

LFRQ: LOW FREQUENCY ٠

With the following 8 bits the oscillation frequency can be set as indicated in Figure 2.16.

W: WAVE FORM

With the following 2 bits 4 different types of frequency (PM) and amplitude (AM) modulation can be output.

PMD/AMD: PHASE MODULATION DEPTH/AMPLITUDE MODULATION DEPTH. Each datum is composed of 7 bits, with the data assigned to the first bit distinguishing between PMD and AMD. The PMD and AMD control the frequency modulation/amplitude modulation signal output level to a resolution of 1/128. As you may have guessed from the previous section on wave forms, the PMD-controlled item is the 2's complement and the AMD-controlled item is binary.

TEST* (LFO RESET) •

The LFO output wave form is reset by entering "1" or "0" int the bits depicted in the diagram below from among the test signals when turning on the unit. The process will restart from the left edge of the previous wave form, providing synchronization once the various modulations are activated.

 NOTE: This is a TEST-use signal; entering level "1" data in a place other than the designated bit will cause the device to into the test mode.

2.1.7 Timer

The Timer actually consists of two different timers: a pre-set 10-bit Timer A and a pre-set 8-bit Timer B. Both timers can be started and stopped. When there is an overflow, these timers function to insert a flag into the data bus. Also, for Timer A there is a key-on function that is activated when there is an overflow. At this point it is necessary stop the interrupt, and there is a control for this as well.

CLKAI/CLKA2

As indicated in the following diagram, these are composed of 2 words of 10 bits. With these, Timer A generates an overflow at the indicated period.

$$T_{A} (ms) = \frac{64 \cdot (1024 \cdot NA)}{\phi_{M} (KHz)}$$

$$\Box \phi_{M} = 3579.545 KHz \qquad (YM2151 added clock frequency)$$

CLKB

Composed of 8 bits as indicated in the following diagram. With these, Timer B generates an overflow at the indicated period.

 T_{B} (ms) = $\frac{1024 \cdot (256 \cdot CLKB)}{\phi_{M} (KHz)}$ (YM2151 added clock frequency) □ φM = 3579.545KHz

LOAD

The start/stop action of timers A and B is controlled with the 2 bits depicted in the following figure. Entering "1" starts the timers, while entering "0" stops them.

F RESET .

These 2 bits reset the flag register contents indicating that the timers mentioned previously have generated an overflow ("1" resets).

IRQ EN

These 2 bits enable you to inhibit the flag register indicating that the Timers mentioned previously have generated an overflow.

CSM .

Entering "1" in this slot enables you to enter a key-on in all sound source slots when Timer A generates an overflow.

IST: (READ MODE)

The 2 bits to be discussed below indicate the status of the flag register. When the IRQ pin terminal reads "0", one of the 2 flag registers will indicate that the overflow from either Timer A or Timer B and that the level status reads "1".

2.1.8 ACC: Accumulator

This functional unit takes the L/R control signal from the register, inputs the musical signal data into either the L sequence or the R sequence, or into both the L and R sequences simultaneously, and accumulates it. The accumulated L/R sequence signals are then alternately output to the serial in mantissa 10- bit (including the sine bit) and index 3-bit offset binary format from the LSB. (Refer to Figure 2.17.)

LR: LEFT CHANNEL ENABLE RIGHT CHANNEL ENABLE

This is the control signal for used to divide the 2-bit signal from the OP between the Left and Right sequences or input it t the simultaneous dual accumulator, as indicated in the following figure.

			_	h	n			1	M2						c	1					C2											
FUNCTION			M	odu	iate	n 1	_				м	odu	lsto	e 2						Carr	rier	1					. (Car	n e ,	2		
SLOT No.	.1	2	3	4	5	6	7		9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
CH No.	1	2	3	4	5		7	4	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	ß	ļ ī	2	3	4	5	4	7	Ř
				_	-					_		-															_					1

When the NOISE control is set at ENABLE, this slot changes t become the noise slot.

Fig. 2.4 KEY CODE, KEY FRACTION

Fig. 2.5 PHASE MULTIPLY

$MUL = (D_1 \sim D_9)$	0	1	2	3	4	5	5	7	8	9	10	11	12	13	14	15
MULTIPLY	0.5	1	2	3	4	5	6	7		9	10	n	12	13	t4	15

Fig. 2.6 DETUNE(1) $DT1 = (D_7 - D_4)$, $OCT = (D_4 - D_4)$, $NOTE = (D_1 - D_2)$

	-	DT1=0	DT1-1	DT1-2	DT1=3	DT1=0	BT1=1	DT1=2	DT1=3
DCT	NOTE	D-CENT				D-FRED	(H2)		
0	0	0.000	0.000	5.025	10.036	0.000	0,000	0.053	0.107
•	1	0.000	0.000	4.729	8.445	0.000	0.000	0.053	0.107
۰	2	0.000	0.000	3.559	7.110	0.000	0.000	0.053	0.107
۰	3	0.000	0.000	2,993	5,790	0.000	0.000	0.053	0.107
1	0	0.000	2.515	5.025	5.025	0.000	0.053	0.107	0.107
1	1	0.000	2.115	4.228	6.338	0.000	0.053	9.197	0.150
:	2	0.000	1.779	3.555	5,330	0.000	0.053	0.107	0.160
:	3	0.000	1.496	2.990	4.483	0.000	0.053	0.107	0.160
2	0	0.000	1.258	2.515	5.025	0.000	0.053	0.107	0.213
2	1	0.000	1.057	3.170	4.225	0.000	0.053	0.160	0.213
2	2	0.000	0.889	2.667	3.555	0.000	0.053	0.160	0.213
2	3	0.000	0.748	2.242	3.735	0,000	0.053	0.160	0.267
3	0	0.000	1.258	2.515	3.143	0.000	0.107	0.213	0.267
3	1	0.000	1.057	2.114	3.170	0.000	0.107	0.213	0.320
3	2	0.000	0.887	1.778	2.667	0.000	0.107	0.213	0.320
3	2	0.000	0.748	1.869	2.615	0.000	0.107	Ø.267	0.373
4	0	0.000	0.629	1.572	2,515	0.000	0.107	0.267	0.427
4	1	0.000	0.793	1.385	2.114	0.000	0.140	0.320	0.427
4	2	0.000	0.667	1.334	2.001	0.000	0.150	0.320	0.490
4	2	0.000	0.561	1.308	1.869	0.000	0.130	0.373	0.533
5	0	0.000	0.629	1.258	1.729	0.000	0.213	0.427	0.587
5	1	0.000	0.529	1.057	1.586	0.000	0.213	0.427	0.640
5	2	0.000	0.445	1.001	1.445	0.000	0.213	0.480	0.693
5	3	0.000	0.467	0.735	1.308	0.000	0.257	0.533	0.747
å	0	0.000	0.393	0,665	1.258	0.000	0.267	0.587	0.853
6	1	0.000	0.397	0.793	1.123	0.000	0.320	0.540	0,907
6	2	0.000	0.334	0.723	1.056	0.000	0.320	0.693	1.013
6	3	0.000	0.327	0.654	0.935	0.000	0.373	0.747	1.067
,	0	0.000	0.315	0.629	0.865	0.000	0.427	0.653	1.173
7	1	0.000	0.264	0,562	0.665	0.000	0.427	0.907	1.173
7	2	0.000	0.250	0.528	0,865	0.000	0.480	1.013	1.173
7	2	0.000	0.234	0.467	0.855	0.000	0.533	1.047	1.173
		,		1		+			

Fig. 2.7 DETUNE(2)

DT2=(D	Da)	0	1	2	3
	(cent)	0	+ 600	+ 781	+ 950
DETUNE	(*)	1	+1,41	+ 1.57	+1.73

Fig. 2.8 PHASE MODULATION SENSITIVITY

	0	1	2	3	4	5	6	7	
$PMS = (D_s - D_s)$						1.00	ADD	+700	
MOD MAX (cent)	0	±\$	±10	± 20	± 50	± 100	2400	2100	
MUD MAA ISSUE		_							

Fig. 2.9 CONNECTION = (FS)

Fig. 2.10 SELF FEED BACK LEVEL

Fig. 2.11 ATTACK, DECAY TIME

- In Figure 2.12, the 6 bits of the RATE after they have undergone key scaling are divided in two parts and are thus expressed as the first 4 bits and the last 2 bits.
- The "(10%~90%)" and "(90%~10%)" tables express the amount of time it takes for the level to reach 90% from 10% and from 90% to 10%.
- The "(96 dB~0 dB)" and "(0 dB~96 dB)" tables express the amount of time it takes for the level to reach 100% from 0% and from 100% to 0%.

 NOTE: These tables assume $\phi_H = 3.6$ MHz.

••• E	ATTACK TUNE +++	••• 69	DECAY TIME	(3		••• 85	SECAT 10% ***
BATE	ASEC (101-901)	RATE	-SEC (902-102)	MATE	ALEC 19345-0481	AATE	ASEC IDER THERE
15 3	0.00	15 3	1.34	15 3	0.00	13 3	4.73
13 2	9.27	15 2	1.33	15 2	0.52	15 7	4.73
13 1	0.27	15 1	1.34	15 1	0.53	18 1	4.73
15 0	9.27	15 0	1.74	13 8	0.51	13 0	4.73
14 3	0.34	14 3	1.55	14.3	0.44	10 2	7.45
14 2	6.39	14 2	1.41	14 2	0.73	14 2	8.97
14 1	0.47	14 1	2.18	14 1	0.79	14 1	10.74
10 0	0.37	10.0	2.72	14 0	1.12	10 0	13.45
13 3	0.47	15.3	3.11	13.2	1.22	12.3	15.28
13 2	0.73	13.2	3.43	13 2	1.42	13 2	17.94
12 1	0.87	13.1	4.35	13 1	1.71	13 1	21.53
12 0	1.09	13 0	5.44	13 0	2.13	13 9	24. 91
12.3	1.55	12 3	8.72	12 3	2.22	12 3	20.75
12.2	1.48	12 2	7.25	12 2	2-14	12.2	75.80
12 1	1.73	12 1	E.70	12.1	3.11	12 1	43.03
12.0	2.19	12 0	10-88	22 Q	3.89	12.0	55.81
11 1	2.50	11.3	12.43	11 3	4.45	11.2	61-50
11 2	2.97	11 2	14.33	11 2	5.19	11 2	71.73
11 1	1.50	<u>U 1</u>	17.41	11 1	6.23		84.19 107.43
11.0	4.57	11 9	21.74		2.24	10 2	125.00
14.3	3.02	10 3	24.97	10 3	8.90	10 2	141.50
10 2	3.81	10 2	29.01	10 2	10.38	10 1	172.20
19.1	7.05	10 1	24.62	10 B	17.44	10 0	215.25
12.2	8.75	* 3	47.52	* 1	17.00	+ 3	745.00
:;	11-54		35.03		20.76	• •	237.00
• •	12,99	• •	47.53		74. 72	• 1	244.41
	17.47		27.04		31.15		422.51
	1	• 1	\$9.47	• 1	25.60	8.3	4=2.91
	23, 77		115.05		41.53	8.2	274.01
	27.99		1 19.25	- i i -	47.83		
10	74.99		174.00		42.27		241.01
13	29.98	73	198.75	7.3	71.19	13	***.02
	45.45	7 2	232,41	7 2	83.04	7 2	11-49.02
71	55. 99	7 1	278.53	71	TT. A7	71	1377.62
70	49.97	7 6	348.14	70	124.29	7 0	1772.03
. 3	74.97	• 3	247.90	\$ 3	142.38	÷ 3	17=8.03
4 2	\$2.30	÷ 2	464.23		184.12	. 2	7246.04
1	111.96	• 1	337.00	4 L	197.34	4.1	2723.24
. 0	134.75	* *	474.32	* •	249.17		3444.03
2.2	157.74	5 3	795.79	53	294.77	5 3	3755.06
5 2	185.60	33	928. 43	17	\$32.23	3.2	4572.07
- 21	223.11		1114.11	- 24	375.68	31	3310.47
30			1372.44		498.52	50	4558.11 7972.12
		11	1571.57	- 11	567.54		9154.14
	447.83	- 11	2228.72	- 11	797.33		11927. 17
			2765.28		TTA		13774.21
		;;	2163.18		1129.00	- 11	13744.24
- 55		3 2	3713.71	- 11	1328.97	- 11	18758.28
- 31		11	4454.45	- 11	1594.71	- 17	22041.94
10		3 9	3570.54	3 0	1993.59	3 0	27292.43
		2.3	s344. 25	- 11	2278.14	2.1	31499.49
		- 22	7427.41	- 11	2437.03	- 11	34724.57
- 11		21	8712.70	21	3167.43	21	44053.88
2.0	2237.18	20	11141.12	2.0	3984.77	2 0	35194.83
1.1	2339.07	13	12732.71	13	4354-31	1.3	A2974.98
1 1		1 2	14854.83	1 2	13:5.70	12	72473.14
		1.4	17825.79		4378.84		BB1 57.77
	0 4478.27	1.0	22262.24	1.0	7123.53	1.0	110227.71
	S LIN CHITT	6.3	ING THE LAND LAND	0 3	DA THE LA		1HF 1H1 CT
	2 Infinite	0 2	to Plat IT			0 2	
•		21	INFINIET				14710177
	¢ INFINITY	00	THE THEFT	• •	INFINITY	0.0	IN INITY

Fig. 2.12 KEY SCALING

- (•) RATEs that have undergone key scaling have doubled the input rate (R) and added the values listed in the table below (Rss).
- (**) AR, D1R, and D2R use the values entered in the register for input rate (R). However, for RR a calculation of double the values entered in the register plus I has been used for the input rate (R).

$$RATE = 2 \cdot R + R \kappa s$$

When calculation results yield a value greater than 63, assume all RATEs = 63.

- R: Input rates
- □ RKS: The values listed in the following table, found by using the KEY CODE and KS.
- However, the KEY CODE used here refers to the KC' of the last 2 detached bits of a note, as indicated in the following diagram.

					ĸĊ
	KS.	ĸs	ĸs	KS	
ĸc	0	1	2	3	Mana ala ala citadi
8	Ð	0	Ö	0	$\left[\sum \mathbf{D}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} \right]$
ĩ	l ő	õ	õ	Ť	
2	õ	0	ĩ	2	OCT Note
3	i õ	0	i	3	Figure 2.13 Bits and weighting of the Fir
4	0	1	2	4	
\$	0	t	2	5	DECAY LEVEL
6	0	1	3	6	DIL
7	0	1	3	7	
8	1	2	4	8	D. D. D. D.
9	1	2	4	÷.	
10	1	****	4	10	dB dB dB dB
11	1	2	5	11	24 12 6 3
12	1	3	6	12	 The decay level value of 48
11	1	э	6	13	•
14	1	3	- 7	14	dB will be added if D7 through
15	11	3	7	15	D_4 are ALL "1" = 45 dB.
16	2	4	8	16	
17	2	4	8	17	
15	2	- 4	9	18	Figure 2.14 Bits and weighting of TOTA
19	2	4	ç	19	LEVEL
20	2	5 5	10	20	
21	2	1	10	21	n
22	2	5		22	
23	2	5	11	23	$\mathbf{D}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} $
24	3	6	12	24	dB dB dB dB dB dB dB
15	3	6	12	25	48 24 12 6 3 1.50.75
26	3	•	13		
27	3	6			
28	1	7	14		Figure 2.15 AMPLITUDE MODULATIO
39	3	7		-	SENSITIVITY
30	1	2	15		
31	3	7	15	31	AMS AM MOD (MAX)
					0 0

AMS	AM MOD (MAX)
0	0
1	23.90625 dB
2	47.8125 dB
3	95.625 dB

Fig. 2.16 LOW FREQ. OSC

DATA	/#69.	DATA	FRED.	DATA	PPED.	GATA	PREQ.
OEL		INCL	(Har I	OWET	6142.3	OUT	Life I
**	32.4127	-	3.3070	78	0.2047		0.0125
72	31.2058	RC.	3.2004	78	3. 2000	x	0.0122
12	47.7921	80 80	3.0737	70 70	0.1754	10 30	0.0121
R (1	46.0852		2.9803	7.	0.1000	ŝ	0.0113
	44.3784	-	2.7724	78	0,1734	54	5.0100
	47.4715		2.4470	74	0.1667	39	0.0104
1	40.7544	24	2.5403	75	9.1600	28	0.0100
"	27.2578		2.4534	77	0.1534	37	0.0095
74	37.5509	54	2.3447	74	0.1467	34	0.0047
2	35.8441 34.1372	5	2.3403	75	0.1400	25	0.0003
5	32.4303	83	2.0247	'n	0.1247	ŝ	0.0079
12	30, 7733	82	1.7202	77	0.1200	32	6.0073
#1	29.0144		1.8135	71	0.1133	21	0.0971
	27.3098		1.7069	70	0.1047	30	0.0047
ø	26.4563	₩¢	1.1575		0.1033		0.0045
Œ	25.6029	*	1.6002	6E	0.1000	2	0.0443
C0 TC	24,7493	42	1.9448	40 60	0.0767	19 22	0.0046
ö	23.0421	2	1,4402	ŝ	0.0100	2	0.0054
EA	22.1872	*	1.3040		0.0047	28	0.0034
64	21.5158	AT	1.1333	47	0.0813		0.0022
ŧ.	20.4923	~	1.2901		0.6800	28	0.0053
U	47.4287	A7	1.2268	67	0.0767	27	0.0048
23	18.7735	*	1.1733	**	0.6733	28	0.0345
63	17.0484	*5	1.1291	63 44	0.0700	25	0.0044
ö	14.2557	AS	1.0154	43	0.0433	5	0.0544
12	15.2417	42	0. 760:	67	0.6500	22	3.0015
t i	14.5083	A1	0,1048	61	9.0547	21	9.0925
€0	13.4347	80	0. 2534	49	0.0533	20	0.4453
2	13.2292		0.8260	×	4.0517		0.0022
96 80	12.8015	*C *D	0.0001	50	0.0500	1E 10	0.0031
õ	11.9480		0.7448	×	0.0427	ic	0.0079
00	11.5213	-	0.7201	ŝ	0.0450	19	0.0078
54	11.0944	74	0.1934	34	0.0433	14	6,0027
24	10.4474	**	0.4447	37	0.0417	19	0.0074
20	10.2412	78	0.6401	54	0.0400	18	0.0025
07 04	9.8144	97 14	0.4134	57 54	0.0283	17	0.0024
33	0.9510	73	0.3601	35	0.0330	13	0.0022
24	8.5343		0.5334	54	0.0333	14	0.0921
21	8.1974	•1	0.5047	53	0.0327	13	0.0070
45	7.4804	*2	0.4801	57	0.0300	17	0.0019
21	7.2342	•1	0.4514	21	0.0251		0.0919
50 CF	6.8274 6.6541	**	0.4267	50 #	0.0257	10	0.0017
ă	4. 4007	ĸ	0,4000	ų.	0.0250	ँव	0.0014
č	4.1874	-	0.3847	40	0.0742	00	0.0011
CC	3. 7740	00	0. 3734	40	0.0233	0C	0.0015
C	3.7607		0.3400	48	0.0225		0.0014
CA	5.5473		0.3467	44	0.0217	-04	0.0014
C1	5.3334		0.3334		0.0208	04 04	0.0013
57	4. 9072		0.3200		0.0172	07	0.0013
ä	4.4437	ž	0.2934	14	0.0183	06	0.0011
53	4. 4005		0.2900	43	0.0173	- 05	0.0011
C4	4.2472		0.2447	44	0.0147	04	0.0010
•	4.0334	83	0.2534	43	9.9158	93	0.0010
8	3.9404	82	0.2400	42	0.0150	02	0.0004
20	3.4137		0.2247	41	0.0142	80	0.000
			4.4.24	-	4.41.24	~	

Fig. 2.17 SO, ¢1, SH1, SH2: TIMING

2.2 Pin Wiring

The YM2151 uses a 24-lead dual in-line package. The terminal signals are indicated in the following diagram.

			Top View			
Vu(GND)	d	1	~~~	24	Þ	eM
RQ	q	2		23		<i>a</i> 1
īC	q	3		22		V00(+5V)
A0		4		21		\$0
WR		5		20		SHI
RD	c	6	YM2151	19	Þ	SH2
R	d	7		18	Þ	D7
CTI	d	7 8	,	37	þ	D6
CT:	d	9		16	þ	D5
D0	q			15	þ	D4
Vm(GND)		п		14	þ	D3
Di	q	12		IJ	þ	D2

2.2.1 Pin Functions

- D₀~D₇: Address/Data Bus (input/output high impedance) A multiplex bus that can be used for both address and data; inputs an 8-bit parallel signal between an external device and the internal register.
- A0: Address/Data Select (Input)
 When A0 = "0", the Do D; signal is processes as an address of the processes of the proceses of the processes of the processes of the processes of the pr

When A0 = "0", the $D_0 \sim D_7$ signal is processes as an address signal; when A0 = "1", the $D_0 \sim D_7$ signal is processed as data.

- WR : Write (Input)
 When there is a write signal, the signals in the bus can be entered.
- RD : Read (Input)

When there is a read signal, the internal signals can be read out via the bus.

CS : Chip Select (Input)

When there is a chip select signal, the A0, \overline{WR} , and \overline{RD} signals become operative and the $D_0 \sim D_7$ bus data can be entered in the internal register or internal data can be read out on the $D_0 \sim D_7$ bus.

- IC: Initial clear (Input) Internal registers and circuits are initialized when this terminal reads "0".
- iRQ : Interrupt request (Output: Open drain)

If either of the 2 types of timer counters begins a carry out, this signal will read out a "0" level and request an interrupt from the CPU. Then, with the CPU's readout of the data, the unit will determine from which timer the interrupt request has been made and will process the interrupt.

CT1, CT2: Control 1, Control 2 (Output)

This is the terminal that is used to control an external device and should read "0" level when at initial condition.

SO: Serial Output (Output)

Takes the tone signal divided between the 2 left and right channels, outputs it as serial data, and sends it to the YM3012 D/A converter specially developed for use with the YM2151.

• SH1, SH2: Sample and hold

Used to pick up the serial data supplied to the YM3012 D/A converter, and for sampling hold after analog conversion.

Inputs the clock ϕM that drives the YM2151, which is internally broken down to and used at 1/2 the frequency. The ϕM is the reference for the tone signal.

- \$\phi1\$: Clock for D/A (Output)
 This clock drives the D/A and operates at the same frequency as the clock inside the
 YM2151. Also, when the \$\phi1\$ level shifts from "1" to "0", the iRQ, CT1, CT2, TO, SH1,
 SH2, and SO signals all change
- VDD: Power Supply (Input) Normally supplies at + 5V.
- Vss: Grand (Input) Conects the system grand.

3. DEVICE SPECIFICATION

3.1 Maximum Ratings

Voltage Range	$-0.3V \sim + 7V$
Operating temperature	0 °C ~ + 70°C
Storage temperature	-50 °C ~ +125°C

3.2 Electrical Characteristics

		[MIN]	[TYP]	[MAX]	
 operating supply voltage (Vss to Voo) 		4.75		5.25	v
 clock [\$M] 					
Voltage level	"0"	-0.3		0.8	v
Voltage level	-1-	2.0		VDD	v
Rise time (Fig.3-1)	Tr			50	ns
Fall time (Fig.3-1)	Tí			50	ns
ON time (Fig.3-1)	Тоя	100			85
Frequency	F¢M	3.0	3.58	4.0	MHz
Input capacitance	СфМ			10	pF

Fig. 3-1

P PHASE DATA

3)	ALL INPUT		[MIN]	[TYP]	[MAX]	
-,	Voltage level "0" Voltage level "1"		-0.3 2.0		0.8 Vdd	v v
4)	ALL OUTPUT					
	Voltage level "0" Voltage level "1"		-0.3 2.4		0.4 Vdd	v v
5)	[A0, WR, RD, ¢M]					
	Input Leak Current (Fig.3-5) L (at 25°C Vi = 0-VDD)		- 10		10	μA
6)	[IC, CS]					
	Input Current (Fig.3-6) li¢ (at	$V_{DD} = 5V$)	10		60	μA
7)	(TRQ*, CT1, CT2, D0-D7, SH1	, SH2, SO, ¢1]				
	Load Current (Fig.3-7) ID (at ' • OPEN DRAIN	VLO=0.4V)			2.1	mA
8)	WRITE/READ TIMING (Fig.	3-2a, Fig.3-2b)				
	Address Set-up Time	(Tas)	10			n5
	Address Hold Time	(Тан)	10			ns
	$\overline{\text{CS}}$ write width	(Tcw)	100			115
	WR WRITE WIDTH	(Twn)	100			ns
	WRITE DATA Set-up Time	(Tos)	50			ns
	WRITE DATA Hold Time	(Тәнж)	10			05
	READ DATA Access Time	(TACC)			180	ns
	READ DATA Hold Time	(Tdhr)	10			ns

9)	[φ]]	[MIN]	[TYP]	[MAX]	
-,	[+.]				
	Rise time (Fig.3-3) Tri			180	ns
	Fall time (Fig.3-3) Tfi			120	ns
	Load capacitance CL (Fig.3-7)			100	pF
10) [IRQ, CT1, CT2, SO, SH1, SH2]					
	Rise time (Fig.3-3) Tr			250	ns
	Fall time (Fig.3-3) Tf			250	ns
	Load capacitance CL (Fig.3-7)			100	pF
11) POWER Supply current Inp		120	mA		
12) POWER Dispation PD (at $V_{DD} = 5.25V$)			630	mW	

NOTE: Tos and TDHN use as a reference either \overline{CS} or \overline{WR} , whichever has attained High Level.

Fig. 3-2b READ TIMING

NOTE: Tace uses as a reference either \overline{CS} or \overline{RD} , whichever is the last to attain Low Level. Tons uses as a reference either \overline{CS} or \overline{RD} , whichever has attained High Level.

Fig. 3-4

Fig. 3-5

Fig. 3-6

Fig. 3-7

Fig. 4.1 SYSTEM BLOCK DIAGRAM

Fig. 4.2 DAC INTERFACE

4. INTERFACING

Figure 4.1 is a block diagram of the basic configuration of the unit, including the microprocessor or microcomputer, DA converter, and speakers, in addition to the YM2151. As it is possible that you may alter the data if you operate this device without synchronizing it with the microprocessor or microcomputer, you can drive the unit by using a separate clock generator to achieve the required sound levels.

With the YM2151 and the DAC configurated as shown in Figure 4.2, you can have both left and right, 2-channel output.

