
Kurzweil 1000 Series
Developer Information

Kurzweil Music Systems, Inc.

Contents of this package:

1. Kurzweil 1000 Series MIDI Implementation

2. Kurzweil 1000 Series MIDI System Exclusive Messages

3. Kurzweil 1000 Series Binary Data Transfer Protocol
How to talk to the K1000 over MIDI.

4. Kurzweil 1000 Series Object Overview
Describes the basic structure of K1000 binary objects. Illustrated!

MIDI Implementation 1

Kurzweil 1000 Series
MIDI Implementation

Kurzweil Music Systems, Inc.

1st Edition: March ’88

MIDI Modes

The 1000 series currently supports three modes of MIDI reception: Omni On/Poly, Omni Off/Poly and Multi. In
Omni On mode, the channel number is ignored. In Omni Off (aka Poly) mode, only messages received on the basic
channel are recognized. In Multi mode, all enabled MIDI channels are recognized.

Note On’s and Off’s

NOTE: The 1000 series products (in fact, all Kurzweil products) refer to Middle C (MIDI key number 60) as C4, in
contrast to numerous software products which mistakenly call it C3. This is, as far as we know, an international
standard to which we’ve been adhering since before we ever heard of MIDI. Included with this document is an ap-
pendix which lists the key numbers and their proper names.

The 1000 series responds to the entire range of MIDI key numbers although the actual, playable range depends on
the selected program. (E.g., some of the sampled instruments have natural ranges which do not cover the entire key-
board.) It is also possible to restrict the MIDI key range on an individual MIDI channel via the master parameters.
In general most programs respond over the range C0 (=12) thru C8 (=108).

The 1000 series also allows multi-layered programs, in which a single MIDI Note On may start multiple voices in
the instrument. This technique is provided to allow creation of complex timbres from combinations of raw sounds;
there is no efficiency gain by using layers. I.e., it takes the instrument just as long to start four layers from a single
MIDI note on as it does to start four individual notes.

The lowest octave of key numbers, C-1 (=0) thru B-1 (=11), is available to control the intonation table reference
key. When used with a suitable MIDI controller, this allows chromatic modulation in real-time while using a non-
equally tempered intonation.

In the K1000 keyboard instrument, Note Off’s are transmitted using the MIDI Note Off message $8x kkk vvv .
This can cause problems with certain simple minded MIDI processors (such as the Yamaha MEP4) which transpose
the MIDI stream by only altering key numbers in Note On messages ($9x) on the assumption that the MIDI control-
ler is sending Note Off’s as zero velocity Note On’s. Currently, there is no solution to this problem but future ver-
sions of the software will add a master parameter to select the type of Note Off (real Note Off or zero velocity Note
On) which is transmitted.

There is a layer-level parameter which allows the Note Off message to be ignored. This is provided so that pro-
grams can be created which play through their envelopes completely, until each note decays to silence. If the enve-
lope doesn’t decay, the note will sustain indefinitely.

In 1000 series software, both attack and release velocity are available (in normal and inverse form) as internal con-
trol sources; programs can be created which respond to these parameters. When a note is started, its release velocity
is set to zero (and inverse release velocity is set to one). When the Note Off is received, the actual release velocity
becomes available. Zero velocity Note On’s which are received are treated as Note Off’s with a velocity of 64.

Program Changes

The 1000 series responds to the full range of MIDI program change numbers. The numbers are mapped through an
editable list (selected by the master parameter RxPMap) which selects the real, internal program number. Program

MIDI Implementation 2

changes which reference non-existent programs are ignored. In general, it takes the instrument about as much time
to change a program as it does to start a single layer note.

Control Changes

All MIDI control numbers are mapped thru a master table which may be replaced by a RAM copy.

Internally, the 1000 series represents all control values as signed, 15 bit fractions with a range of ±1. MIDI controls
(except for the pitch wheel) are treated as uni-polar values with a range of 0 to 1. When a control source is used as a
switch, it is considered to by ON if its value is greater than or equal to 0.5. This translates into an MSB value of 64
or greater. The details of how MIDI control values are mapped to internal control values are as follows:

The continuous control MSB’s (control numbers 1 thru 31) and LSB’s (control numbers 33 thru 63) are recorded for
all sixteen MIDI channels. When an MSB message is received, the corresponding LSB is forced to zero if the MSB
value is zero; otherwise the LSB is set to all ones. Thus, a control value of 0 yields an internal value of 0, while a
control value of 127 ($7F) yields an internal value of -1 ($7FFF). Thus, it is desirable to transmit the MSB of any
continuous controller first, followed by the LSB.

The continuous ’switches’ (control numbers 64 thru 95) are treated similarly to the continuous control MSBs. When
an MSB of zero is received, the LSB of the internal value is set to zero, otherwise it is set to all one’s. Thus the in-
ternal value of any control is

value = 256 * MSB + 2 * LSB

In general, the 1000 series software makes no distinction between internal control sources (e.g., envelopes or LFO’s)
and external control sources (i.e., MIDI controls). This allows any MIDI control source to be patched to any control
input.

Certain well-defined control numbers are given special treatment:

7 Volume MSB
39 Volume LSB

The volume control may be thought of as controlling an imaginary output VCA. Thus it is completely in-
dependent of the note amplitude. This can cause problems with certain wind controllers which transmit
MIDI volume as a way of creating a real-time envelope. Switches are provided to ignore MIDI volume at
both the layer and the MIDI channel. In addition, the mapping the control values to loudness is controlled
by a master table which may be overridden by a RAM copy.

64 Sustain Pedal.
When this switch is on, playing notes are held until the switch is off or until they have decayed to silence.
A layer-level parameter is provided to ignore the sustain pedal.

66 Sostenuto Pedal
This switch behaves like the sustain pedal, but only notes whose keys were down when the pedal was de-
pressed are held. A layer-level parameter is provided to ignore the sostenuto pedal.

67 Soft Pedal
At note start, the value of this control (0 to 1) is multiplied by the layer-level soft pedal range parameter
(±dB) and the result is subtracted from the initial amplitude of the note. The sign of the range parameter
determines whether the notes get louder or softer. When this control is used with a switch pedal, its value
will be either 0 or 1, but since it responds to the full range of MIDI control values, it can actually be used as
a continuous attenuator. Once a note has been started, this control has no effect.

69 Suspend Pedal (aka Freeze Pedal)
This switch behaves like the sostenuto pedal, but in addition to sustaining the note, the envelopes are frozen
as well. A layer-level parameter is provided to ignore the suspend pedal.

MIDI Implementation 3

121 All Controls Off
When this message is received, all controls are reset to zero, with the following exceptions: volume (#7 and
#39) is set to maximum ($7FFF), balance (#8 and #40) and pan (#10 and #42) are set to center point
($4000).

122 Local Control On/Off
This message is only recognized by the K1000 on the basic MIDI channel (it is ignored in rack-mount
equipment).

123 All Notes Off
The All Notes Off message is recognized in all MIDI modes. In particular, it is not ignored in Omni On
mode. This is contrary to the MIDI spec but represents the unanimous opinion of our users.

NOTE: most Roland equipment (e.g., MKB-1000, D-50, etc.) sends an All Notes Off message when all the
keys are released. In order to deal with this, the 1000 series includes a master parameter which allows you
to ignore the all notes off message. We call it the "Roland Switch." And I just discovered (as I am work-
ing on this document) that Kawai equipment exhibits the same behavior.

124 Omni Off
125 Omni On

When not in Multi Mode, the Omni On/Off messages are recognized on the basic MIDI channel only. In
Multi Mode, these messages are ignored. This is contrary to the MIDI spec but represents the unanimous
opinion of our users.

When the instrument is in edit mode, the following control numbers are also recognized:

6 Data Entry Slider MSB
38 Data Entry Slider LSB
96 Data Increment
97 Data Decrement

The data entry slider (control numbers 6 and 38) and the data increment/decrement buttons (control num-
bers 96 and 97) are recognized when the instrument is in edit mode.

98 Non-Registered Parameter Select LSB
99 Non-Registered Parameter Select MSB

When the instrument is in edit mode, the non-registered parameter select MSB selects the edit menu and
the LSB selects the parameter within the menu. However, because the menu selection varies based on high
or low level editing mode and in some cases (e.g., envelopes) the actual parameter list varies, there is no
absolute mapping between select values and actual parameters.

Pitch Wheel

Currently, the pitch wheel is the only MIDI control which has an internal range which is bipolar (i.e., ±1). The ac-
tual conversion from MIDI data values to internal form is

pitch wheel value = 256 * MSB + 2 * LSB - $4000

Future implementations of the software will provide an absolute value pitch wheel control source with a range of 0
to 1 in both directions, to allow effects to be tied to pitch bending in either direction.

Mono and Poly Pressure

Both Mono Pressure and Poly Pressure messages are recognized. Internally they are treated as additional control
sources but their internal values are derived by a mapping table rather than a direct conversion. Note that both pres-
sure sources are treated as separate entities. Thus it is possible to create programs which have separate responses to

MIDI Implementation 4

both Mono and Poly Pressure, provided you have a MIDI controller which transmits both. On the other hand, a pro-
gram which responds to Poly Pressure will not respond to Mono Pressure, and vice versa. Future versions of the
software will provide some master parameter to allow global selection of the pressure source.

Poly Pressure messages are only recognized for keys which have notes playing. Note that Poly Pressure messages
transmitted after a Note Off message has been received may still be acted upon if the note is still playing (e.g., as a
result of a slow decay). This can actually occur if you strike the same key twice. If the envelope has a long decay,
the pressure messages for the new note will also affect the previous note.

System Common/Real-Time

All system common (except for System Elusives [SIC]) and real-time messages are ignored.

Note Names and Key Numbers

Octave C C# D D# E F F# G G# A A# B

-1 0 1 2 3 4 5 6 7 8 9 10 11
0 12 13 14 15 16 17 18 19 20 21 22 23
1 24 25 26 27 28 29 30 31 32 33 34 35
2 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59
4 60 61 62 63 64 65 66 67 68 69 70 71
5 72 73 74 75 76 77 78 79 80 81 82 83
6 84 85 86 87 88 89 90 91 92 93 94 95
7 96 97 98 99 100 101 102 103 104 105 106 107
8 108 109 110 111 112 113 114 115 116 117 119
9 120 121 122 123 124 125 126 127

System Exclusive Messages 1

Kurzweil 1000 Series
System Exclusive Messages

Kurzweil Music Systems, Inc.

2nd Edition: April ’88
1st Edition: February ’88

The 2nd edition of this document provides a correction to the front panel button code list.

These notes describe the current state of system exclusive messages in the K1000 series. All values are expressed
in hexadecimal.

Version Request

The K1000 responds to the standard MIDI version request message:

$F0 $7E <device ID> $06 $01 $F7 ; request

The 1000 defaults to a device ID of $00, although it may be set to any value from $00 to $7F

$F0 $7E <device ID> $06 $02 ; response
$07 ; Kurzweil ID
p1 p2 p3 p4 ; product ID
e1 e2 ; engine software version
s1 s2 ; setup software version

$F7

p1 through p4 represent four hexadecimal numerals which constitute the product ID. p1 is the major product head-
ing (150 FS, 250, or 1000), and p2 through p4 distinguish the various models within the major headings. The prod-
uct code for a 1000 GX, for example, would be: p1 = $64; p2 = $01; p3 = $04; p4 = $00. The table below shows the
codes for all Kurzweil products with SysEx capabilities.

ID# Product
$15 K150
$19 K250 or 250RMX
$64 $01 $00 $00 1000PX

$01 $01 $01 PX Plus
$01 $02 $00 1000SX
$01 $03 $00 1000HX
$01 $04 $00 1000GX
$01 $05 $00 AX Plus
$01 $05 $02 1200 Pro
$02 $01 $00 K1000 SE
$03 $01 $01 1000EX
$04 $01 $00 EGP

p1 p2 p3 p4

e1, e2, s1, and s2 represent the hexadecimal values indicating the software version of the 1000. e1 and e2 indicate
the engine (operating system) software, which is common to all 1000 Series products. s1 and s2 indicate the setup
software. It is the setup software which distinguishes a GX from a PX, etc. For both engine and setup software, the
first numeral is the major version number, and the second is the subversion, if any. For example, version 1.0 would
be represented as $01 $00 . Version 2.14 would be $02 $0E .

System Exclusive Messages 2

Remote Front Panel

The remote front panel messages allow control of the 1000 series over MIDI. The format of the message is

$F0 $07 <device ID> $64 $01 <buttons> $F7

where $64 is the major product ID (i.e., 1000 series) and <buttons> are any number of button codes:

Code Button
$00 digit ’0’ (K1000 only)

...
$09 digit ’9’ (K1000 only)
$10 play/edit
$11 mode/layer
$12 chan/menu increment
$13 chan/menu decrement
$14 chan/menu incr & decr (double press)
$15 prog/param increment
$16 prog/param decrement
$17 prog/param incr & decr (double press)
$18 value increment/yes
$19 value decrement/no
$1A value incr & decr (double press)
$1B enter (K1000 only)
$1C store (K1000 only)
$20 bank ’A’ (K1000 only)
$21 bank ’B’ (K1000 only)
$22 bank ’C’ (K1000 only)
$7F send display

Whenever the special "send display" button ($7F) is sent, the K1000 responds with

$F0 $07 <device ID> $64 $02 <display text> $F7

where <display text> is the contents of the K1000 display as ordinary ASCII characters.

Dump Request Message

$F0 $07 <device ID> $64 $03
<type-msb> <type-lsb> <id-msb> <id-lsb> <RAM-flag>

$F7

This message may be used to request a dump of any object or group of objects in the 1000’s memory. The type and
ID number select the object to be dumped. A type of $00 means all types and and ID number of $00 means all ob-
jects of the requested type. If the RAM-flag is true (i.e., not zero) only objects stored in non-volatile RAM will be
dumped. For example, to request a dump of all RAM based programs, use:

$F0 $07 <device ID> $64 $03 $00 $50 $00 $00 $01 $F7

To request a dump of the Master Parameter Table, use:

$F0 $07 <device ID> $64 $03 $00 $42 $00 $00 $01 $F7

To request a memory dump (User Objects and RAM), use:

$F0 $07 <device ID> $64 $03 $00 $42 $00 $10 $01 $F7

System Exclusive Messages 3

Channel Setup Message

$F0 $07 <device ID> $64 $04
<chan-a> <mode-a> <chan-b> <mode-b> ...

$F7

This message may be used to set the MIDI mode (Omni, Poly, or Multi) and to enable or disable specific MIDI
channels. If <chan-a> (or subsequent) = $00, then it signals a mode change. A value of $01 for <mode-a> (or later)
indicates Omni mode, $02 is Poly, and $03 is Multi.

If <chan-b> or subsequent is $01 through $10 (16), it is read as a MIDI channel number. In this case, the following
<mode> byte value determines whether that MIDI channel is active. $00 enables the channel, and $01 disables it.
For example, to put the instrument in Multi mode, with channels 1 thru 4 enabled, use:

$F0 $07 <device ID> $64 $04 $00 $03 ; multi mode
$01 $00 $02 $00 $03 $00 $04 $00 ; enable 1-4
$05 $01 $06 $01 $07 $01 $08 $01 ; disable 5-8
$09 $01 $0A $01 $0B $01 $0C $01 ; disable 9-12
$0D $01 $0E $01 $0F $01 $10 $01 ; disable 12-16

$F7

Binary Data Transfer Protocol 1

Kurzweil 1000 Series
Binary Data Transfer Protocol

Kurzweil Music Systems, Inc.

2nd Edition: April ’88
1st Edition: February ’88

Notes on 2nd Edition

The 2nd edition of this document corrects an error in the description of the data packet checksum. The checksum is
computed over the data bytes only and does not include the packet number and size as the previous document de-
scribed.

Introduction to the 1st Edition

These notes describe a simple(?) mechanism for reliable binary (eight bit) data transmission over MIDI. The imple-
mentation is a two level approach; the transmission of binary information is separated from the purpose (e.g., file
transfer) of the information.

First, a basic packet level protocol is defined which allows for bidirectional exchange of binary (eight bit) data pack-
ets with error checking and re-transmission. This protocol features a synchronization sequence which allows both
parties to negotiate details such as transmission speed (to allow for higher-than-MIDI baud rates), packet size and
number of outstanding packets (for machines with large buffers).

Within the context of the packet protocol, higher level protocols may then be defined to implement various forms of
data transfer (remote file systems, interactive streams, etc).

This protocol, as described, is currently implemented on the new 1000 series of rack-mount MIDI expanders as well
as the new K1000 keyboard. A description of the 1000 data transfer messages is also included, to illustrate how the
packet protocol may be used.

The Packet Level

The following description assumes a bidirectional link (closed loop) between the two parties. There is a brief dis-
cussion at the end of this section on how the protocol behaves in an open loop situation.

Message Format

All messages are transmitted as standard Kurzweil system exclusive messages of the form:

$F0 $07 <dev-ID> <mesg-ID> <data ...> $F7

Normally, in Kurzweil system exclusives, the <mesg-ID> byte is actually a product ID. Since this protocol is in-
tended to apply to a variety of products, we use a certain range of the number space for message ids:

$78-$7B Sync Messages (levels 0 thru 3)
$7C Data Packet
$7E Data Packet acknowledged (ACK)
$7F Data Packet not acknowledged (NAK)

The Hand Shake

To exchange data packets (in either direction), the parties at either ends of the MIDI cable must be in sync. Not
physical sync, since we are transmitted data asynchronously, but logical sync, in which each party begins in the

Binary Data Transfer Protocol 2

same state. The synchronization process consists of exchanging handshake messages which specify the desired
transmission parameters (speed, packet size, etc.). These messages have the form

$F0 $07 <dst-ID> <syncN> <src-ID>
<xSpeed> <nPacks> <pSizeH> <pSizeL> $F7

The elements of this message are

dst-ID The device ID of the destination. SYNC0 ($78) messages may be sent with a device ID of 127 as a
general request for sync.

syncN The message ID ($78 thru $7B), which includes the party’s current synchronization state.

src-ID The device ID of the transmitter (0 thru 126).

xSpeed The desired transmission speed (1x, 2x, 4x, etc.).

nPacks The maximum number of outstanding packets (1 thru 127).

pSize The maximum number of eight bit bytes that will be transmitted in a packet (a 14 bit value sent as
two seven bit values).

All sync sequences begin at level 0 with both parties transmitting at standard MIDI speed. A party can transmit
SYNC0 messages to actively make a connection or it can wait passively for the arrival of a SYNC0 message. When
either party receives a SYNC0 message, it should respond by transmitting a SYNC1 message. Here, the transmis-
sion parameter negotiation takes place: each party begins by declaring its maximum capability and then lowering its
parameters in response to SYNC1 messages from the other party, until a common denominator has been achieved.
Then each party switches to level 2. If a speed change is required because the parties have agreed on a higher trans-
mission rate, they switch speeds before transmitting their level 2 messages. Once the parties exchange identical
SYNC2 messages, they switch to level three. Once each party has received a valid SYNC3 message, synchroniza-
tion has been achieved and the exchange stops. Now the parties are able to exchange data packets.

Data Packets

Each data packet message has the form:

$F0 $07 <dst-ID> $7C <src-ID> <pktNum> <pSize> <data ...> <chkSum> $F7

The elements are

dst-ID The destination device ID (0 thru 126).

src-ID The source device ID (0 thru 126).

pktNum The packet number. Packet numbers will sequence from 0 to 127.

pSize The number of eight bit bytes contained in the packet (two seven bit values concatenated, MSB
sent first). Must be between zero and the agreed upon maximum. The actual number of data
bytes in the message will be larger (see below).

data The binary data, transmitted in a seven bit format (see below).

chkSumA fourteen bit check sum accumulated over the data bytes only. The check sum is calculated by
rotating the 16 bit sum left one bit and then adding each seven bit value. Only the low seven bits
of each byte are transmitted in the packet (i.e., the sign bits are dropped), MSB first.

Binary Data Transfer Protocol 3

Binary Data Transmission Format

The simplest transmission scheme is "nibble-izing," sending each data byte as two four bit values. This is the easy
to read but it doubles the transmission time. The most efficient packing format (short of some exotic compression
scheme like Huffman encoding) is to send the low seven bits of each byte, with every seven data bytes followed by
one byte containing the seven sign bits. Thus, the seven binary data bytes

AAAAaaaa BBBBbbbb CCCCcccc DDDDdddd EEEEeeee FFFFffff GGGGgggg

are transmitted as

0AAAaaaa 0BBBbbbb 0CCCcccc 0DDDdddd 0EEEeeee 0FFFffff 0GGGgggg 0ABCDEFG

If the number of data bytes is not a multiple of seven, a short chunk is transmitted. E.g., if three bytes are left over

AAAAaaaa BBBBbbbb CCCCcccc

they are transmitted as

0AAAaaaa 0BBBbbbb 0CCCcccc 00000ABC

This scheme requires that the receiver know the length of the stream, either in logical size (i.e., the number of eight
bit bytes) or physical size (the number of seven bit bytes). In general, to transmit N eight-bit bytes requires N + (N
+ 6)/7 seven bit bytes (assuming truncating integer division). Conversely, receiving M seven bit bytes yields 7 * (M
/ 8) + (M mod 8 - 1) eight bit bytes.

Since the packets are delimited by the system exclusive message, their length is self defined. Thus, within the
packet itself, we include the size as the number of eight bit bytes contained in the data. While this may seem
counter-intuitive, we believe it to be a more convenient number since it represents the size of the buffer into which
the data is unpacked (see the attached code samples).

Response to Data Packet

$F0 $07 <dst-ID> $7E <src-ID> <pktNum> $F7 (ACK)
$F0 $07 <dst-ID> $7F <src-ID> <pktNum> $F7 (NAK)

Successfully received packets are ACKed. If an error or timeout occurs during packet reception, the receiving party
will transmit a NAK message. Upon receiving a NAK, the transmitting party will re-transmit the incorrect packet.

Open Loop Behavior

Timeouts during a sync sequence will cause the transmitting party to reduce its requirements to a minimum (lowest
speed, one packet, 128 byte packet size) and begin data transmission. Since it knows that the other party did not re-
spond to sync, it can transmit packets at a default rate, without waiting for timeouts on ACKs.

Data packets received by party which is not in level three sync are ignored. Thus, a receiver which may operate in
either mode needs some kind of front panel control to enable the reception.

Bypassing Sync

It is also possible to allow a receiver to power up in level 3 sync state (given default parameters of normal MIDI
speed, 1 outstanding packet and a reasonable buffer size, say, 128 bytes). This would allow it to transmit and re-
ceive data packet messages without going thru the handshake sequence.

Binary Data Transfer Protocol 4

Message Summary

State Message Condition Response Newstate

SYNC0
SYNC0 SYNC1 SYNC1
other none

SYNC1
SYNC0 SYNC1
SYNC1 mismatch SYNC1
SYNC1 match SYNC2 SYNC2
other none SYNC0

timeout SYNC0

SYNC2
SYNC2 match SYNC3 SYNC3
SYNC2 mismatch SYNC0 SYNC0
SYNC3 match SYNC3 SYNC3
SYNC3 mismatch SYNC0 SYNC0
other none

timeout SYNC0

SYNC3
SYNC2 match SYNC3
SYNC3 none
DATA correct ACK
DATA error NAK

rcv timeout NAK
NAK limit exceeded SYNC0

ACK transmit next
NAK re-transmit current

xmt timeout re-transmit
retry limit exceeded SYNC0

other SYNC0 SYNC0

K1000 Data Transfer Protocol

The higher level protocol consists of a stream of messages which exist at a level above the packet protocol, which
simply acts as a delivery vehicle. In the K1000 series expanders, this higher level protocol implements a simple re-
mote file system which allows a remote computer to manipulate the contents of the K1000’s object heap memory.

Message Format

100 message-id data...

Each message begins with its protocol ID byte (in this case, 100, the product ID for the K1000 series) and a message
ID. The format of the remaining data is determined by the message type. Messages are divided into two categories,
requests and responses. For convenience, request message types are even numbers and the response type for any
message is its request type + 1.

Binary Data Transfer Protocol 5

In the following, all messages are in eight-bit binary! They must be formatted, then transmitted using the packet
protocol described above. Also, the notation [n] indicates the size of the item in bytes. If omitted, the size is one
byte.

Directory Request/Response

100 0 type idno
100 1 type idno size[4] zone[4] name[N]

Used by the remote device to request information about objects contained in the K1000’s memory. An idno of
zero means all objects of a given type. Size gives the size of the object in bytes, zone identifies the heap space in
which the object resides, and name is the name of the object (if it has one) as a NUL-terminated string.

The when a request for info about all objects of a given type is received, the K1000 responds with a series of mes-
sages. The last of these is a null message (idno of zero) to indicate the end of the list.

Dump Request/Response

100 2 type idno size[4] offset[4]
100 3 type idno size[4] offset[4] data[N]

Used to read objects (or portions of objects) from the K1000’s memory. A single read request will elicit multiple
responses if request size is larger than the available data size in the message.

Create New Object

100 4 type idno size[4]
100 5 type idno size[4] zone[4]

Used to create new objects in the K1000’s memory. If the size item in the response message is zero, the object
could not be created and the zone item is an error code. Otherwise, zone indicates the heap zone name in which
the object will reside. New objects may have the same ID as ROM objects; in this case the RAM object will "hide"
the ROM object.

Write Request/Response

100 6 type idno size[4] offset[4] data[N]
100 7 type idno size[4] offset[4]

Used to write data into objects (or portions of objects). When writing into a newly created object, the series of write
requests should be terminated by a zero length write message (i.e., an EOF signal).

Delete Object

100 8 type idno
100 9 type idno

Used to delete objects from the K1000’s memory. Deleting a RAM object which was overriding a ROM object of
the same ID will "uncover" the ROM object. Thus, if one is maintaining a directory of K1000 objects, the delete
request should be followed by an info request to determine if a ROM version of the object exists.

Object Overview 1

Kurzweil 1000 Series
Object Overview

Kurzweil Music Systems, Inc.

1st Edition: February’88

Objects In General

The ROM and RAM memory of the 1000 series is organized as a collection of objects which are identified by a
unique type and ID number. Any object may be up or downloaded by using the binary data transfer protocol (de-
scribed in a separate document). Besides programs (aka patches) other object types exist (e.g., LFO shape tables)
and any ROM object may be replaced by a RAM version.

Object Format

The first two bytes of each object contain the type and ID number of the object. E.g., in a program, the type is
progType and the ID number is the the program number (typically one greater than the MIDI program number).
While some objects have a fixed size (in which the format of the remaining data is determined solely by the type of
the object) most objects are variable sized; the second word of the object is the size of the object in bytes. The size
may be odd but the software assumes that all objects begin on even boundaries and pads the size to an even number
of bytes.

Each variable sized object consists of 1) a header whose size is determined by the object type, 2) an optional name
(presence determined by type), NUL-terminated and padded to an even number of bytes and 3) the extension data
whose size is just the size of the object less the size of the fixed header and the name (if present). The contents of
the extension data is arbitrary; for certain objects (programs and layers) the extension data contains more objects
(which may be of fixed or variable size). Thus, editor/librarian software must be prepared to deal with a hierarchy
of nested objects.

Programs, Layers, Etc.

The most visible user object is the program, which is basically a shell which contains the layer objects (up to four
in the current 1000 series) as well as objects which define global control sources (LFOs and ASRS). The informa-
tion in the program header is small, consisting of some voice allocation parameters (stealing and polyphonicity
limit) and an alternate MIDI program number.

The majority of the information needed for starting notes is contained in the layer object. Besides the stuff in the
layer header, the layer’s extension data contains objects which define the local control sources (LFOs, ASRs and
envelopes).

Many of the items in objects are ID numbers of other objects; others are enumerations where the actual value of a
parameter is obtained by using the parameter as an index into a table. As an example, lets look at the description of
the LFO parameter block:

/*
 * LFO parameter
 */
typedef struct {

uByte lfob_type; /* = lfoType */
uByte lfob_idno; /* = 1 or 2, 8 or 9 for globals */
uByte lfob_rfu;
uByte lfob_flags; /* initial phase, etc */
uByte lfob_shape; /* ID# of shapeType object */
uByte lfob_rtCtl; /* rate control (enum table #1) */
uByte lfob_rtMin; /* min rate (enum table #4) */
uByte lfob_rtMax; /* max rate (enum table #4) */

} LFOB;

Object Overview 2

In this structure the waveshape of the LFO is determined by the lfob_shape parameter, which is the ID# of an
LFO shape table (i.e., a shapeType object). Thus to display the name of the waveshape (e.g., ’Sine’ or ’Rising
Saw’) one needs a list of shapeType ID’s and names. Similarly, the LFO’s rate control and range are obtained by
indexing into the appropriate master tables (tables #1 and #4).

Most stuff within the layer block is fixed size, with two exceptions: the envelopes and two tables (ID numbers 17
and 18) used by the high level effects (absent if the program uses modular effects). The envelope header just con-
tains the number of segments in each section (attack and release) with the segments themselves immediately follow-
ing the header.

Note: although the on-board editor allows only eight segments per section, the note control software supports up to
128 segments per section. However, trying to edit (in the 1000) an envelope with more than eight segments in a sec-
tion will probably cause the editor to crash!

Objects within the program or layer are parsed in sequential order. Scanning stops at the end of the data or when an
invalid object is detected. Valid objects which are not recognized by the note control software are ignored (e.g., the
two tables mentioned above are used only by the editor). If two objects have the same ID number, the last one seen
is the one that is used.

The ID numbers of the various objects are significant. E.g., each layer may have an LFO #1 and/or #2. LFOs with
IDs other than these are ignored (although future instruments may support more LFOs per voice). Global LFOs,
which are contained in the program data, have ID numbers beginning with nine (e.g., gLFO 1 is really LFO #9).

Note: Early on in the development, we decided that any local object (i.e., with an ID number of 1 thru 8) appearing
in the program data would apply to all layers (unless overridden by a specific object appearing in the layer data).
We haven’t actually done this yet, but will probably do so in a future release of the software to allow limited form of
data compression. Be prepared!

Within programs and layers, table ID numbers 1 thru 63 are reserved (e.g., in the next release, a special table ID
may be designated to contain MIDI data to be transmitted on program change). Other numbers may be used, e.g., to
add comments, copyright info, etc.

Keymaps and Sound Blocks

Each layer object contains the ID of a keymap; this object is a variable size mapping table used to convert MIDI
key numbers and attack velocities into pitch and loudness and sample selection. Each keymap in turn refers to one
or more sound blocks, which are collections of sound file headers (which contain the low level information needed
to play back the samples). Since these are variable-sized structures with several optional sections, a diagram of the
overall layout is included.

The variable data portion of a keymap consists of one or more byte per key arrays. These include one or two bytes
of optional tuning information, optional volume adjust, optional sound block IDs and sound file IDs. Keymaps are
also organized into multiple timbre levels which are automatically selected by key velocity.

Note: Currently, a keymap always contains a byte per key array of sound file header numbers. A future optimiza-
tion will allow for special keymaps which reference a single soundfile (e.g., an attack noise) by storing the sound
file ID in the headers

The sound blocks contain lists of sound file headers. These are the actual descriptions of the samples, along with
the so-called "natural envelopes" needed for proper playback.

Other Objects

The actual waveshapes generated by the LFOs are stored as shapeType objects. All incoming MIDI program
numbers are converted to internal program numbers using MIDI program lists (mlistType). Intonation tables
(itblType) allow tuning of the scale away from equal temperment. Velocity maps (vmapType), in combination

Object Overview 3

with several of tables described below, determine the mapping of MIDI key velocities into loudness and control
sources.

Demo Song Objects
(excerpts from the V5 Software addendum manual)

A RAM based SONG (Demo) object is basically a MIDI File, Type 0, with a 1000 Series object header prepended
to it. Demo songs may be loaded, named, renumbered, or removed with ObjectMover. A separate program is
needed to turn MIDI files into object files.

There may be more than one Demo song in an object file, in which case, there would be multiple song headers. All
song objects must be word aligned. The Demo player will play them in the order of their resource IDs, in a repeat-
ing cycle.

It is recommended that your program remove, or truncate, text meta-events from the data stream (to save RAM
space). Only the tempo meta-event is interpreted by the 1000.

The block size in the object header is the size of all the objects in file, negated. The blockSize must include every-
thing from itself to the end of file, so you will calculate DO_blockSize like this:

demoFile->DO_blockSize = -(fileSize - 32);

The object size itself is calculated in a similar way. Object size should include all data from the type and id fields,
to the end of your song. Because this is a 16 bit field, there is a 64K maximum size for demo objects.

The tempo field (DS_tempo) is a precalculated clock increment providing the initial tempo of the song. This is a
32 bit field which is added to the Demo clock every 2 milliseconds. The Demo clock counts off 1/480 of a quarter
note times, with a 16 bit fraction. Your program can calculate the clock increment like this:

myDemo->DS_tempo = (long)bps * 1048L;

Where ’bpm’ is the desired "beats per minute" for your song. If you are working from the MIDI file’s "microsec-
onds per beat" value, the formula becomes:

myDemo->DS_tempo = (60000000 / uspb) * 1048L;

Following the song header, comes the name field. This name may be any length (up to 64 chars) and must be null
terminated. The MIDI File song data starts on the next even address after that.

Tables

Table objects are actually miscellaneous, one-of-a-kind objects. All tables are variable sized, unnamed objects; the
format of the extension data is determined by the particular table’s ID number. The following is a list of some of the
more interesting tables organized by ID number:

Description

1 Control Source Enumeration Table gives name, type and ID# for both MIDI and internal control sources.
2 Envelope/ASR Time Enumeration. Determines the actual times for envelope and ASR segments. Non-linear.
3 Enumeration of note start delays. Non-linear.
4 Enumeration of LFO rates. Non-linear. Contains offsets into table #27.
5 Enumeration of Envelope Scale Factors. Contains offsets into table #6. Uses 5% resistor value scale.
6 Logarithmic Multiplier Table used to scale envelope rates. Table #5 contains offsets into this table.

11 MIDI control number map. Incoming MIDI control change messages have their control numbers
mapped thru this table. Allows re-assignment of controls.

16 Master parameter data. Contains most everything that is editable in the master menu. Snapping a copy of
this object captures the entire state of the machine (MIDI channel and mode, program assignments, etc).

Object Overview 4

17 Object mapping table (contained in program only). Used by the high-level effects editor to map pseudo
parameters to real parameters.

18 Pseudo parameter table (program only). Contains the actual values of the high-level pseudo parameters.
21 Key velocity to loudness curve (combined with velocity map).
22 Key velocity to control source value curve (combined with velocity map).
23 Mono/Poly pressure to control value curve. Default is linear.
24 Volume control table (MIDI control value to loudness). Non-linear.
25 Balance control table. Equal power crossfade curve.
27 LFO phase increments. Table #4 contains offsets into this table.
28 Enumeration of bi-polar envelope segment values. Converts percentages into output levels. Linear.
29 Enumeration of amplitude envelope segment values. Converts percentages into loudness levels. Non-linear.

Note: The master parameter block, which is currently table #16, is soon to become a distinct, named object. Thus,
the instrument will be able to store multiple sets of master parameters. We haven’t decided exactly how to do this,
yet, so stay tuned for more info...

K1000 Object Types

Type# Hex Description Named?

66 $42 Master Table
68 $44 LFO Shape yes
69 $45 Sound Block yes
70 $46 Keyboard Map yes
71 $47 MIDI Program List yes
72 $48 Edit Menu Definition
73 $49 Edit Menu Group
74 $4A Edit Menu Entry List
75 $4B Intonation Table yes
76 $4C Compiled Effects Descriptor yes
77 $4D (Rcv) Velocity Map yes
78 $4E Rcv PressMap ? v5
79 $4F Editor Descriptor
80 $50 Program Data Block yes
81 $51 Layer Data Block yes
82 $52 ASR Parameter Block
83 $53 LFO Parameter Block
84 $54 ENV Parameter Block
85 $55 EFX Parameter Block
86 $56 INVNEG Parameter Block
87 $57 MXR Parameter Block
91 $5B Demo Song yes v5
94 $5E Program List ? v5
95 $5F Bin Map ? v5

Object Overview 5

K1000 Database Master Tables

ID# Description Where

1 Control Source Enumeration EROM
2 ENV/ASR Time Enumeration SROM
3 Delay Time Enumeration SROM
4 LFO Rate Enumeration SROM
5 ENV Ctl Scale Enumeration SROM
6 ENV Ctl Log Multiplier SROM
7 Playback Rate Compensation Table (2) SROM
8 Edit Parameter ID Table EROM
9 Edit Menu Position Table EROM
10 Editor Default Object Table EROM
11 MIDI Control Mapping Table EROM
12 Front Panel Button Table (4,5) SROM
13 Diagnostic Tables (4) SROM
14 Product Configuration Table (3,4,6) EROM SROM
15 Arnold Configuration Table (1) SROM
16 Prototype Master Data Block (5) SROM
21 Velocity to Loudness Curve SROM
22 Velocity to Control Source Curve SROM
23 Pressure to Control Source Curve SROM
24 MIDI Volume Control Table EROM
25 Equal Power Attenuation Curve EROM
26 Playback Rate Table EROM
27 LFO Phase Increment Table EROM
28 ENV Value Enumeration EROM
29 Amp ENV Value Enumeration EROM
30 Amp ENV Attack Shape Curve EROM

Notes:

1. Determines sound engine configuration and bandwidth.
2. Specific to sound engine bandwidth.
3. Determines UART and front panel type.
4. Specific to product.
5. Specific to front panel.
6. Determines initial settings after hard reset.
7. Contains product and version ID numbers.

Types.h 1

/*
 * Types.h Tuesday, February 23, 1988 7:04 PM
 */

/*
 * object type numbers
 */
enum {

blockType=64, /* 64 $40 - ignore */
indexType, /* 65 $41 - internal index */
tableType, /* 66 $42 - Master Table */
shapeType=68, /* 68 $44 - LFO Shape Table (named) */
soundType, /* 69 $45 - Sound Block (named) */
keymapType, /* 7a $46 - Keyboard Map (named) */
mlistType, /* 71 $47 - MIDI Program List (named) */
menuType, /* 72 $48 - Edit Menu */
mngType, /* 73 $49 - Edit Menu Group */
melType, /* 74 $4A - Edit Menu Element */
itblType, /* 75 $4B - Intonation Table (named) */
fxType, /* 76 $4C - Compiled Effects */
vmapType, /* 77 $4D - (Rcv) Velocity Map (named) */
pmapType, /* 78 $4E - Rcv Pressure Map (named), V5 */
editType=79, /* 79 $4F - Editor */
progType, /* 80 $50 - Program Data (named) */
layerType, /* 81 $51 - Layer Data (named) */
asrType, /* 82 $52 - ASR Parameter Block */
lfoType, /* 83 $53 - LFO Parameter Block */
envType, /* 84 $54 - ENV Parameter Block */
efxType, /* 85 $55 - EFX Parameter Block */
invType, /* 86 $56 - INV/NEG Parameter Block */
mxrType, /* 87 $57 - MXR Parameter Block */
songType=91, /* 91 $5B - Demo Song (named), V5 */
plistType=94, /* 94 $5E - Program List, V5 */
bmapType, /* 95 $5F - Bin Map, V5 */
lastType /* keep last! */

};

#define baseType blockType

#define globidno 8 /* base id # for globals */

Objects.h 1

/*
 * Objects.h Tuesday, February 23, 1988 7:35 PM
 */

/*
 * Database definitions for K1000 Database Objects
 * To insure future compatability, all RFU items must be zero!
 */

typedef char sByte; /* signed byte */
typedef unsigned char uByte; /* unsigned byte */
typedef int sWord; /* signed word (a ’short’) */
typedef unsigned int uWord; /* unsigned word (a ’short’) */

#define nDYNAM 8 /* # dynamic range marks */

/*
 * generalized data block header
 */
typedef struct {

uByte gdb_type;
uByte gdb_idno;
sWord gdb_size;

} GDB;

/*
 * extended data block header
 */
typedef struct {

uByte xdb_type;
uByte xdb_idno;
sWord xdb_rfu;
long xdb_size;

} XDB;

/*
 * Master data block
 */
typedef struct {

uByte mdb_type; /* tabletype */
uByte mdb_idno; /* 16 */
sWord mdb_size;
uByte mdb_mode; /* MIDI mode */
uByte mdb_chan; /* basic MIDI channel # 1...16) */
uByte mdb_devI0; /* sys-ex device ID 0...126 */
uByte mdb_dchan; /* displayed channel # 1...16 */
uByte mdb_velMap; /* ID of vmapType object */
uByte mdb_ctlMap;
uByte mdb_flags;
uByte mdb_bflags;
sByte mdb_tune; /* master tune (± cents) */
sByte mdb_trans; /* master transpose (± semi-tones) */
uByte mdb_intTab; /* ID of itabType object */
uByte mdb_refKey; /* intonation reference key */
uByte mdb_txPList; /* transmit program change map */
uByte mdb_rxPList; /* receive program change map */
uByte mdb_bbPList; /* bin bank program map (K1000 only) */
uByte mdb_bbentry; /* current entry */
uByte mdb_editPos[4];
sByte mdb_pwRange; /* global pitch wheel range (± QT) */
sByte mdb_spRange; /* global soft pedal range (± dB) */
sByte mdb_dynam; /* additive dynamic range adjust (±dB) */
uByte mdb_rfu1;
uByte mdb_version[4]; /* software version stamp */
uByte mdb_cprogs[16]; /* programs/channel */

Objects.h 2

/*
 * local keyboard control assignments (K1000 only)
 */
uByte mdb_pedal1; /* sustain pedal */
uByte mdb_pedal2; /* other pedal */
uByte mdb_wheelUp; /* mod wheel - up */
uByte mdb_wheelDn; /* mod wheel - down */
uByte mdb_slider; /* data slider */
uByte mdb_rfu2;
uByte mdb_rfu3[10];
/*
 * more per channel stuff
 */
uByte mdb_cflags[16]; /* flags */
sByte mdb_volume[16]; /* volume adjust (±dB) */
sByte mdb_stereo[16]; /* stereo position */
uByte mdb_plimit(16]; /* poly limit */
uByte mdb_range[16][2]; /* low/hi MIDI keys */

} MDB;

/* Flag definitions for mdb_flags */
#define mdb_monoOut 0x01 /* force monophonic output */
#define mdb_ignNOff 0x02 /* ignore MIDI all notes off */
#define mdb_mRefKey 0x04 /* MIDI intonation ref key */
#define mdb_parEdit 0x08 /* MIDI parameter editing */
#define mdb_confirm 0x10 /* ~confirm deletes */
#define mdb_echoPChg 0x20 /* echo program changes */
#define mdb_stealSame 0x40 /* steal same note */

/*
 * Flag definitions for mdb_bflags
 */
#define mdb_btnRept 0x01 /* button repeats */
#define mdb_btnRate 0x02 /* button repeat rate (slow/fast) */
#define mdb_btnAccl 0x04 /* button acceleration */

/*
 * Flag definitions for mdb_cflags
 */
#define mdb_volDis 0x01 /* volume disabled */
#define mdb_panOver 0x02 /* stereo pan override */
#define mdb_rngOver 0x04 /* MIDI kbd range override

/*
 * program data block
 * just a shell to enclose the layer definitions
 */
typedef struct {

uByte pdb_type;
uByte pdb_idno;
sWord pdb_size;
uByte pdb_rfu1;
uByte pdb_midiProg; /* output program */
uByte pdb_stealOpt; /* assignment algorithm */
uByte pdb_phLimit; /* polyphonicity limit */
uByte pdb_rfu3[8];

} PDB;

/*
 * layer data block (named)
 * contained in program data
 */
typedef struct {

uByte ldb_type; /* = layerType */
uByte ldb_idno;
sWord ldb_size;
uByte ldb_keymap; /* ID of keymapType object */
uByte ldb_lokey; /* lowest MIDI key # */

Objects.h 3

uByte ldb_hikey; /* highest MIDI key # */
sByte ldb_trans; /* transpose (± semi-tones) */
sByte ldb_dtune; /* detune (± cents) */ */
uByte ldb_delay; /* delay (enum table 23) */
sByte ldb_volume; /* volume adjust (±dB) */
sByte ldb_stereo; /* stereo position */
uByte ldb_effect; /* compiled effect ID */
uByte ldb_nLink; /* compiled effect linkage */
uByte ldb_kflags; /* key state flags */
uByte ldb_xflags; /* effects flags */
uByte ldb_enable; /* enable switch (enum table #1) */
uByte ldb_legato; /* alt attack switch (enum table #1) */
uByte ldb_vflags; /* velocity trigger stuff */
uByte ldb_dynam; /* dynamic range (dB) */
sByte ldb_keyTilt; /* amplitude tilt (±dB) */
uByte ldb_balCtl; /* balance control (enum table #1) */
sByte ldb_spRange; /* soft pedal range (±dB) */
sByte ldb_pwRange; /* pitch wheel range (± quarter-tones) */
uByte ldb_lastOut; /* used by compiled effects */
uByte ldb_rfu[7];

} LDB;

/*
 * ldb_kflags
 */
#define ldb_ignRels 0x01 /* ignore key release */
#define ldb_ignSust 0x02 /* ignore sustain pedal */
#define ldb_ignSost 0x04 /* ignore sostenuto pedal */
#define ldb_ignSusp 0x08 /* ignore suspend pedal */

/*
 * ldb_xflags
 */
#define ldb_pwlDis 0x01 /* pitch wheel disabled */
#define ldb_pwlKey 0x02 /* pitch bend only key down */
#define ldb_volDis 0x08 /* volume control disabled */
#define ldb_touchDis 0x10 /* touch sense disabled */ */
#define ldb_balRev 0x20 /* balance control reversed */

/*
 * ldb_vflags
 */
#define ldb_vt1Level 0x07 /* vtrig 1 level (fff -> ppp) */
#define ldb_vt1Sense 0x08 /* vtrig 1 sense */
#define ldb_vt2Level 0x70 /* vtrig 2 level */
#define ldb_vt2Sense 0x80 /* vtrig 2 sense */

/*
 * Amplitude control patch block
 */
typedef struct {

uByte type, idno; /* = efxtype,1 */
uByte rfu1[2];
uByte amInput; /* mod source (enum table #1) */
uByte amDepth; /* mod depth (enum table #1) */
sByte amMin , /* min depth (dB) */
sByte amMax; /* max depth (dB) */
uByte rfu2[8];

} AFXB;

/*
 * Pitch control patch block
 */
typedef struct PFXB {

uByte type, idno; /* = efxType,2 */
uByte rfu1[2];
uByte fmInput; /* mod source (enum table #1 */
uByte fmDepth; /* mod depth (enum table @1) */

Objects.h 4

sByte fmMin; /* min depth (cents) */
sByte fmMax; /* max depth (cents) */
uByte rfu3;
uByte dtCtl; /* detune control (enum table #1 */
sByte dtMin, /* min value (cents) */
sByte dtMax; /* max value (cents) */
uByte rfu2[4];

} PFXB;

/*
 * Envelope control patch block
 */
typedef struct ENCB {

uByte type, idno; /* = efxType,3 */
uByte rfu1[2];
struct {

uByte rfu;
uByte rateCtl; /* control (enum table #1) */
uByte minScale /* min rate (enum table #5) */
uByte maxScale; /* max scale (enum table #5) */

}
atCtl, /* attack rate */
dtCtl, /* decay rate */
rtCtl; /* release rate */

} ENCB;

/*
 * ASR parameter block
 */
typedef struct ASRB {

uByte asrb_type; /* = asrType */
uByte asrb_idno;
uByte asrb_flags;
uByte asrb_trig; /* trigger input (enum table #1) */
uByte asrb_dtime; /* delay time (enum table #2) */
uByte asrb_atime; /* attack time (enum table #2) */
uByte asrb_stime; /* sustain time (unused) */
uByte asrb_rtime; /* release time (enum table #2) */

} ASRB;

/*
 * asrb_flags
 */
#define asrb_hold 0x01 /* hold while trigger on */
#define asrb_rept 0x02 /* repeat while trigger on */
#define asrb_effect 0x80

/*
 * LFO parameter block
 */
typedef struct {

uByte lfob_type; /* = lfoType */
uByte lfob_idno;
uByte lfob_rfu;
uByte lfob_flags;
uByte lfob_shape; /* ID of shapeType object */
uByte lfob_rtCtl; /* rate control (enum table #1) */
uByte lfob_rtMin; /* min rate (enum table #4) */
uByte lfob_rtMax; /* max rate (enum table #4) */

} LFOB;

/*
 * lfob_flags
 */
#define lfob_phase 0x03 /* initial phase (0, 90, 180, 270) */
#define lfob_effect 0x80

Objects.h 5

/*
 * envelope parameter block
 */
typedef struct {

uByte envb_type; /* = envType */
uByte envb_idno;
sWord envb_size;
uByte envb_naSegs; /* # attack segments */
uByte envb_nrSegs; /* # release segments */
uByte envb_rfu[2];

} ENVB;

/*
 * envelope segments immediately follow the header
 *
 * for all segments but last
 * level and time are enumerated
 *
 * last segment of each section is special:
 *
 * if (level > 0)
 * jump back and repeat going forward
 * level is segment # to jump to
 * time is repeat count (0 means infinite)
 *
 * else if (level < 0)
 * loop back and repeat (ie, backward, then forward)
 * -level is segment # to stop at and change direction
 * time is repeat count (0 means infinite)
 *
 * else (level == 0)
 * if (time > 0)
 * time is decay/release time
 * else if (attack section)
 * infinite sustain
 * else
 * instant release
 *
 */

typedef struct {
sByte eseg_level; /* level (enum table #28 or #29) */
uByte eseg_time; /* time (enum table #2) */

} ESEG;

/*
 * INV/NEG data block
 */
typedef struct {

uByte invb_type; /* = invType */
uByte invb_idno;
uByte invb_rfu[2];
uByte inub_inv1in; /* input (enum table #1) */
uByte invb_inv2in;
uByte invb_neg1in;
uByte invb_neg2in;

} IHVB,

/*
 * MXR data block
 */
typedef struct {

uByte mxrb_type; /* = mxrType */
uByte mxrb_ldno;
uByte mxrb_rfu[2];
uByte mxrb_in1A; /* input (enum table #1) */
uByte mxrb_in1B;

Objects.h 6

uByte mxrb_in2A;
uByte mxrb_in2B;

} MXRB;

/*
 * keymap (named)
 * converts key number and velocity to sound file, pitch, and amplitude
 */
typedef struct {

uByte kmap_type; /* = keymapType */
uByte kmap_idno;
sWord kmap_size;
sWord kmap_loKey; /* low MIDI key # */
sWord kmap_nKeys; /* # keys - 1 */
sWord kmap_keyOff; /* offset to key data */
sWord kmap_nOctv; /* notes/octove */
sWord kmap_pitch; /* pitch of lowest key */
sWord kmap_cents; /* cents/key */
uByte kmap_flags;
uByte kmap_sound; /* ID of soundType object */
uByte kmap_rfu1;
uByte kmap_level; /* # timbre levels */
uByte kmap_timbre[nDYNAM]; /* timbre level map */
uByte kmap_rfu2[4];

} KMAP;

/*
 * kmap_flags
 */
#define kmap_atten 0x01 /* 1 means separate atten/key */
#define kmap_tune 0x0C /* tuning type */

/*
 * the keymap data consists of byte/key arrays
 *
 * switch (kmap_flags & kmap_tune)
 * case 0x00: no tuning adjust
 * case 0x04: relative byte (LSB only)
 * case 0x08: relative word (MSB/LSB)
 * case 0x0C: absolute word (MSB/LSB)
 *
 * for (each timbre level) {
 * if (kmap_flags & kmap_atten)
 * amplitude adjust (1 byte/key) (8 * dB / 6)
 * if (kmap_sound == 0)
 * sound block ID (1 byte/key)
 * sound file header ID (1 byte/key)
 */

/*
 * sound block (named)
 */
typedef struct sblk {

uByte sblk_type; /* = soundType */
uByte sblk_idno;
sWord sblk_size;
sWord sblk_hBase; /* base sound file ID # */
sWord sblk_nHdrs; /* # sound file headers - 1 */
sWord sblk_hdrOff; /* offset to 1st header */
uByte sblk_rfu[6];

} SBLK;

/*
 * block header is followed by NUL-terminated name
 * then by array of sound file headers
 */
typedef struct sfh {

uByte sfh_rootKey; /* root MIDI key # */

Objects.h 7

uByte sfh_flags;
sWord sfh_atten; /* amp adjust (dons) */
sWord sfh_pitch; /* pitch at highest play rate */
uByte sfh_rfu1[2];
long sfh_start1; /* normal start sample address */
long sfh_start2; /* alternate start sample address */
long sfh_loop; /* loop point sample address */
long sfh_end; /* last sample address + 2 */
sWord sfh_env1; /* offset to normal envelope */
sWord sfh_env2; /* offset to alternate envelope */
uByte sfh_rfu2[4];

} SFH;

/*
 * header array is followed by natural envelopes
 * each segment is two words:
 *
 * delta-a,delta-s
 *
 * where delta-s is the segment length in samples
 * and delta-a is the attack/decay rate computed as
 *
 * delta-a = (2048 * delta-dB) / (6 * delta-s)
 *
 * if the delta-a of the 1st segment is > 0,
 * a starting amplitude of 0 is assumed
 * otherwise, the amplitude starts at the maximum value
 *
 * the last two segments are the decay and release segments
 * the delta-s for these must be 0
 * the delta-a should be computed using a delta-s which corresponds
 * to the # of samples in 10 msec at the highest playback rate
 * for the decay segment, delta-a may be zero (for infinite sustain)
 */

/*
 * LFO shape table (named)
 *
 * header followed by name, then waveshape (256 words)
 * signed indexing is used so the offset is to the 0th entry
 * (ie, the middle of the table)
 */
typedef struct {

char shapeTYPE; /* shapeType */
char shapeID; /* ID # */
sWord shapeSize; /* size (bytes) */
sWord shapeOffs; /* offset to center point (0th entry) */

} SHAPE;

/*
 * MIDI List (named)
 * used to map MIDI Program change numbers to real program numbers
 */
typedef struct {

uByte mlistTYPE;
uByte mlistID;
sWord mlistSize;
sWord mlistBase; /* base MIDI program * */
sWord mlistN; /* # table entries - 1 */
sWord mlistOff; /* offset to 1st entry (byte) */

} MLIST;

Objects.h 8

/*
 * Intonation table (named)
 */
typedef struct {

uByte itblTYPE;
uByte itblID;
sWord itblSize;
sWord itblTbl[12]; /* [0] always 0 */

/* entries in cents rel to equal temp */
} ITBL;

/*
 * Velocity map (named)
 */
typedef struct {

uByte vmapTYPE;
uByte vmapID;
sWord vmapSize;
uByte vmapVels[nDYNAM]; /* fff -> ppp */

} VMAP;

/*
 * Data structure definitions for 1200 Demo objects
 * (from the V5 manual addendum)
 */

/*
 * file type, first longword in file
 */
#define SROM 0x53524F4D

/*
 * Demo object type and id declarations
 */
#define Demo1200 0x5B
#define DemoIDBase 1

/*
 * object file header, one per file
 */
typedef struct {

long DO_type; /* Demo (SROM) */
word DO_rfu[14]; /* must be 0 */
long DO_blockSize; /* negative block size */

} dFHdr;

/*
 * song header, one per song
 */
typedef struct {

char DS_objType; /* 0x5B is a Demo song */
char DS_objID; /* is (1..255) */
word DS_objSize; /* size of object */
long DS_tempo; /* actual initial beat increment */

} demoSong;

/* name of the object goes here, before the song itself */
/* (must be null terminated, even number of bytes) */

Tables.h 1

/*
 * Tables.h Tuesday, February 23, 1988 7:15 PM
 */

/*
 * standard table header
 */
typedef struct TBLHDR {

uByte tbl_type; /* = tableType */
uByte tbl_idno;
sWord tbl_size;

} TBLHDR;

/*
 * time enumeration entry
 */
struct enumTime {

uWord ticks; /* msec / 10 */
uWord delta; /* 32767 / ticks */
uWord slop; /* 32767 % ticks */
uWord rfu;

};

/*
 * lfo rate enumeration
 */
struct enumRate {

uWord roffs; /* offset into rate table entry */
uWord hertz; /* hertz * 100 */

};

/*
 * control source enumeration
 */
struct enumCtls {

uByte type;
uByte idno;
sWord offs; /* offset to name string

};

/*
 * envelope scale factor table header
*/
struct envScaleHdr {

sWord base; /* offset to 0th entry */
sWord low, high; /* valid index range */
sWord dispNom; /* display value denominator */

}

/*
 * table entry
 */
struct envScaleEnt {

sWord multOff; /* offset into log multiplier table */
sWord dispNum; /* display value numerator */

}

Tables.h 2

/*
 * table IDs
 */
enum {

enumCtlsID=1, /* 1 - control source enum */
enumTimeID, /* 2 - ENV/ASR time enum */
enumDelayID, /* 3 - layer delay enum */
enumRateID, /* 4 - LFO rate enum */
envScaleID, /* 5 - EMU rate scale factor anum */
logScaleID, /* 6 - log multiplier table */
prcTableID, /* 7 - playback rate compensation */
pidTableID, /* 8 - parameter ID table */
mnpTableID, /* 9 - menu position table ID */
defTableID, /* 10 - default object table */
ctlMapID, /* 11 - MIDI control mapping table */
btnTableID, /* 12 - front panel button table */
diagTblID, /* 13 - diagnostic table */
productID, /* 14 - product ID/configuration */
arcTableID, /* 15 - Arnold configuration */
masterID, /* 16 - initial master parameters */
omtID, /* 17 - object mapping table (program only) */
pseudoID, /* 18 - Pseudo parameters (program only) */
attenMapID=21, /* 21 - velocity -> attenuation table */
velocMapID, /* 22 - velocity -> control value table */
pressMapID, /* 23 - pressure -> control value table */
volTableID, /* 24 - volume control table */
balTableID, /* 25 - balance control table */
playRateID, /* 26 - playback rate table */
lfoDeltaID, /* 27 - LFO phase increment table */
envValueID, /* 28 - bi-polar EMU level enumeration */
ampValueID, /* 29 - amplitude EMU level enumeration */
atkTableID, /* 30 - amplitude EMU attack table */
typeTableID

};

Diagrams 1

1000 Series Program/Layer Structures

Program
$50 ID size

program header

name

sound layer

additional layers,

global LFOs, ASRs

etc.

Layer
$51 ID size

layer header

name (empty)

envelopes

local LFOs, ASRs

etc.

LFO
$53 ID

flags

shape rate

min max

ASR
$52 ID

flags tr ig

delay attack

releas

ENV
$54 ID

size

#aseg #rseg

level1 time1

. . .

levelN timeN

level1 time1

. . .

levelN timeN

attack

release

Program Header

0 1 2 3

0
$50 ID # size (bytes)

4 output
prog #

stealing
option poly limit

8

12

Layer Header

0 1 2 3

0
$51 ID # size (bytes)

4 keymap
ID # low key # high key # transpose

8
detune delay volume stereo

12 compiled
EFX ID#

compiled
EFX link k-flags x-flags

16 enable
switch

alt start
switch v-flags dynamic

range
20 keyboard

tilt
balance
control

soft pedal
range

p-wheel
range

24 compiled
EFX

Layer Flags

k-flags ignore
suspend

ignore
sostenuto

ignore
sustain

ignore
release

x-flags balance
sense

touch
disable

volume
disable

p-wheel
key only

p-wheel
disable

v-flags v-tr ig #2
sense velocity trigger #2 level v-tr ig #1

sense velocity trigger #1 level

Diagrams 2

1000 Series Master Parameter Block

0 1 2 3 4 5 6 7

0
$42 16 size MIDI Mode Channel SysEx ID Display

Channel
8 velocity

map ID flags bflags master
tuning

master
transpose

intonation
table ID

intonation
key number

16 transmit
prog map

receive
prog map

bin bank
prog list

bin bank
selection

24 p-wheel
range

soft-pdl
range

dynamic
range adj software version stamp

32 program program assignment per channel

48 pedal 1
assign

pedal 2
assign

wheel up
assign

wheel dn
assign

slider
assign

64 flags miscellaneous flags per channel

80 +/-dB volume adjust per channel

96 +/-9 stereo position per channel

112 off,1..N polyphonicity limit per channel

128 low high MIDI key number range per channel

1000 Series LFO Tables

LFO Rate Enumeration

type=$42 ID=4

size (bytes)

offset to phase incr

her tz * 100

. . .

offset to phase incr

her tz * 100

LFO Phase Increment

type=$42 ID=27

size (bytes)

phase incr[0]

non-linear table

of phase

increments

phase incr[2047]

LFO Shape Table

type=$44 ID#

size (bytes)

offset to
zeroth entry

name
(nul-ter minated)

value[-128]

. . .

value[0]

. . .

value[127]

0

255

Diagrams 3

1000 Series Keymap Structure

keymap header

keymap name

tuning MSB
(types 2 or 3)

tuning LSB
(types 1, 2 or 3)

volume adjust
(if header flag set)

sound block IDs
(if ID in header is zero)

sound file IDs
(always present)

$46 ID size (bytes)

low MIDI key #
(C4=60) # keys - 1

offset to key data # notes/octave

pitch of lowest key
(cents rel C0 = 0) cents/key

flags sound
block ID

timbre
levels

timbre level map (8bytes)
indexed by dyn.mar k (fff...ppp)

rfu

duplicated for
each timbre level

byte
per
key

1000 Series Sound Block Structure

sound block header

name

sound file headers

(indexed by ID #)

. . .

natural envelopes

$45 ID # size (bytes)

base header ID # # headers - 1

offset to 1st header

root key #
(C4=60) flags attenuation

(2048 * dB / 6)
highest pitch

(cents rel C0=0)

star ting sample address

alter nate star ting address

star t-of-loop address

end-of-loop address + 2

offset to
nor mal envelope

offset to
alter nate envelope

Diagrams 4

1000 Series Velocity Mapping

Velocity to
Loudness Table

$42 21

size

0

ppp

pp

p

mp

mf

f

ff

fff

127

Ke yboard Velocity Map

$4D ID# size ppp pp p mp mf f ff fff name

0 Velocity 127

min

max

Loudness

